Example
3LC1. Linear model: US production function (48 states in 9 regions)
Baltagi, Song and Jung (2001) estimated a Cobb Douglas production function for the US productivity data of Munnell (1990) for the period 1970-1986. The data set (productivity.dat) contains information by year, state and region on various capital and labour inputs. The same data were used by Rabe-Hesketh and Skrondal (2005, exercise 7.3). The data are for 48 US states (level 2) and 9 regions of the US (level 3). We estimate a 3-level model of the logarithm of private capital stock, using some of the state-level measures of unemployment and various publicly funded activities as covariates.
References
Baltagi, B. H., S. H. Song, and B. C. Jung, (2001), Journal of Econometrics 101: 357–381.
Munnell, A., (1990), Why has productivity growth declined? Productivity and public investment. New England Economic Review. Jan. / Feb.:3–22.
Rabe-Hesketh, S., and Skrondal, A., (2005), Multilevel and Longitudinal Modelling using Stata, Stata Press, Stata Corp, College Station, Texas.
Data
description
Number of observations = 816
Number of level 2 cases (‘state’ = states of U.S.) = 48
Number of level 3 cases (‘region’ = region of U.S.) = 9
Number of variables (columns): 17
The variables are:
state = states 1-48
region = regions 1-9
year = years 1970-1986
public = public capital stock
hwy = log(highway component of public capital stock)
water = log(water component of public capital stock)
other = log(bldg/other component of public capital stock)
private = log(private capital stock)
gsp = log(gross state product)
emp = log(non-agriculture payrolls)
unemp = state unemployment rate
The first few lines of productivity.dat look like:
Example
We will start by estimating a linear model (without random effects) for the logarithm of private capital stock, private with the covariates hwy, water, other and unemp.
We will then allow for both the state random effect (state) and for the region random effect (region), using mass 96 for both level 2 and level 3.
Both these random effects are significant and significant, sclev2= 0.29718 (0.46362E-02), sclev3=0.25728 (0.59759E-02), and sclev2> sclev3.
Sabre
commands
out productivity.log
data state region year public hwy water other private gsp emp unemp
read productivity.dat
case first=state second=region
yvar private
family g
constant cons
mass first=96 second=96
alpha 1
ari a
fit hwy water other unemp cons
dis m
dis e
stop
Sabre
log file
<S> data state region year public hwy water other private gsp emp unemp
<S> read productivity.dat
816 observations in dataset
<S> case first=state second=region
<S> yvar private
<S> family g
<S> constant cons
<S> mass first=96 second=96
<S> alpha 1
<S> ari a
<S> fit hwy water other unemp cons
Initial Homogeneous Fit:
Iteration Log. lik. Difference
__________________________________________
1 -92.779046
Iteration Log. lik. Step End-points Orthogonality
length 0 1 criterion
________________________________________________________________________
1 103.83069 1.0000 fixed fixed 10.740
2 164.91413 1.0000 fixed fixed orthogonal
3 223.61434 1.0000 fixed fixed 42.534
4 398.66698 0.2500 fixed fixed 31.955
5 566.38688 1.0000 fixed fixed 115.99
6 570.93147 0.5000 fixed fixed 246.80
7 620.84031 1.0000 fixed fixed 4.2063
8 623.61855 0.0313 fixed fixed 2.0443
9 644.67990 0.0625 fixed fixed 1.0336
10 650.52590 0.0156 fixed fixed 6.8368
11 656.76716 0.2500 fixed fixed 190.53
12 818.89009 1.0000 fixed fixed orthogonal
13 819.90069 1.0000 fixed fixed 30.958
14 821.07209 0.5000 fixed fixed 16.374
15 821.12792 0.0156 fixed fixed 4.1429
16 821.43748 0.0313 fixed fixed orthogonal
17 823.01496 1.0000 fixed fixed orthogonal
18 824.22349 1.0000 fixed fixed orthogonal
19 825.35265 1.0000 fixed fixed orthogonal
20 826.26399 1.0000 fixed fixed orthogonal
21 827.09599 1.0000 fixed fixed 11.708
22 827.21836 0.0078 fixed fixed orthogonal
23 827.86688 1.0000 fixed fixed 1.9105
24 827.88532 0.0020 fixed fixed 5.2971
25 828.22338 0.0313 fixed fixed orthogonal
26 830.19284 1.0000 fixed fixed 13.645
27 830.88480 0.5000 fixed fixed 21.926
28 831.07719 0.0625 fixed fixed orthogonal
29 833.75857 1.0000 fixed fixed 6.6293
30 837.85297 0.1250 fixed fixed 14.817
31 838.95540 0.0313 fixed fixed 1.7552
32 839.49882 0.0313 fixed fixed 23.321
33 839.69707 0.0625 fixed fixed 541.01
34 845.39686 1.0000 fixed fixed orthogonal
35 845.68906 1.0000 fixed fixed 47.137
36 845.75796 1.0000 fixed fixed 1.8814
37 847.99216 0.0156 fixed fixed 83.612
38 849.76283 0.1250 fixed fixed orthogonal
39 850.45014 1.0000 fixed fixed 21.772
40 851.83832 0.0625 fixed fixed 102.61
41 852.42080 0.0625 fixed fixed 3.2700
42 852.50899 0.0078 fixed fixed 67.357
43 854.46818 0.1250 fixed fixed 7242.5
44 855.63389 1.0000 fixed fixed 1092.9
45 856.11039 0.0625 fixed fixed 20.617
46 856.21877 0.0039 fixed fixed 12.124
47 856.25543 0.0039 fixed fixed 6.6368
48 857.06500 0.0020 fixed fixed 21.259
49 857.35161 0.0078 fixed fixed 992.65
50 857.61633 1.0000 fixed fixed 2620.9
51 859.23405 0.5000 fixed fixed 1816.3
52 859.84857 1.0000 fixed fixed 3010.6
53 859.92138 1.0000 fixed fixed 11616.
54 859.92154 1.0000 fixed fixed 2188.8
55 859.92154 1.0000 fixed fixed
<S> dis m
X-vars Y-var Case-var
________________________________________________
cons private state
hwy region
water
other
unemp
Univariate model
Standard linear
Gaussian random effects
Number of observations = 816
Number of level 2 cases = 48
Number of level 3 cases = 9
X-var df = 5
Sigma df = 1
Scale df = 2
Log likelihood = 859.92154 on 808 residual degrees of freedom
<S> dis e
Parameter Estimate Std. Err.
___________________________________________________
cons 1.5157 0.53379E-01
hwy 0.35939 0.13771E-01
water 0.56907 0.12396E-01
other 0.18537 0.13000E-01
unemp 0.21874E-02 0.13306E-02
sigma 0.71069E-01 0.17798E-02
sclev2 0.29718 0.46362E-02
sclev3 0.25728 0.59759E-02
<S> stop