Example 3LC2. Binary response model: Guatemalan mothers using prenatal care for their children (1558 mothers in 161 communities)

 

The data (guatemala_prenat.dat) we use in this example are from Rodríguez and Goldman (2001), and are about the use of modern prenatal care. The data set has 2449 observations on children with a binary indicator for whether the mother had prenatal care, there are 25 covariates.  The variables include the level-2 mother identifier (mom), the community or cluster (level-3) identifier, a binary indicator of the use of prenatal care for each child and other child-family, and community-level explanatory variables. The explanatory variables are either continuous variables (pcind81: proportion indigenous in 1981 and ssdist: distance to nearest clinic) or 0-1 dummy variables (all others) representing discrete factors coded using the reference categories. Reference categories are child aged 0-2 years, mother aged <25 years, birth order 1 (eldest child), ladino (a Spanish term used to describe various socio-ethnic categories in Central America), mother with no education, husband with no education, husband not working or in unskilled occupation, no modern toilet in household, and no television in the household.

 

Reference

G. Rodríguez and N. Goldman (2001) Improved estimation procedures for multilevel models with binary response, Journal of the Royal Statistics Society, Series A, Statistics in Society, Volume 164, Part 2, pages 339-355

 

Data description

 

Number of observations = 2449

Number of level-2 cases (‘mom’ = identifier for mothers) = 1558

Number of level-3 cases (‘cluster’ = identifier for communities) = 161

The variables appear in the same order as in Table 3 in G. Rodríguez and N. Goldman (2001) and are:

kid= child id (2449 kids)

mom= family id (1558 families)

cluster= cluster id (161 communities)

prenat= used modern prenatal care (1=yes, 0=no)

kid3p= child aged 3-4 years

mom25p= mother aged 25+ years

order23= birth order 2-3

order46= birth order 4-6

order7p= birth order 7+

indnospa= indigenous, speaks no Spanish

inspa= indgenous, speaks Spanish

momedpri= mother's education primary

momedsec= mother's education secondary+

husedppri= husband's education primary

husedsec= husband's education secondary+

huseddk= husband's education missing

husprof= husband professional, sales, clerical

husagrself= husband agricultural self-employed

husagremp= husband agricultural employee

husskilled= husband skilled service

toilet= modern toilet in household

tvnotdaily= television not watched daily

tvdaily= television watched daily

pcind81= proportion indigenous in 1981

ssdist= distance to nearest clinic

 

The first few lines and variables of guatemala_prenat.dat look like:

 

 

 

 

Sabre commands

 

out guatemala_prenat.log

data kid mom cluster prenat kid3p mom25p order23 order46 order7p indnospa &

     indspa momedpri momedsec husedpri husedsec huseddk husprof husagrself &

     husagremp husskilled toilet tvnotdaily tvdaily pcind81 ssdist

read guatemala_prenat.dat

case first=mom second=cluster

yvar prenat

constant cons

mass first=36 second=36

fit kid3p mom25p order23 order46 order7p indnospa indspa momedpri momedsec &

    husedpri husedsec huseddk husprof husagrself husagremp husskilled &

    toilet tvnotdaily tvdaily pcind81 ssdist cons

dis m

dis e

stop

 


 

Sabre log file

 

<S> data kid mom cluster prenat kid3p mom25p order23 order46 order7p indnospa &

<S>      indspa momedpri momedsec husedpri husedsec huseddk husprof husagrself &

<S>      husagremp husskilled toilet tvnotdaily tvdaily pcind81 ssdist

<S> read guatemala_prenat.dat

 

       2449 observations in dataset

 

<S> case first=mom second=cluster

<S> yvar prenat

<S> constant cons

<S> mass first=36 second=36

<S> fit kid3p mom25p order23 order46 order7p indnospa indspa momedpri momedsec &

<S>     husedpri husedsec huseddk husprof husagrself husagremp husskilled &

<S>     toilet tvnotdaily tvdaily pcind81 ssdist cons

 

    Initial Homogeneous Fit:

 

    Iteration       Log. lik.       Difference

    __________________________________________

        1          -1697.5174

        2          -1361.0935        336.4

        3          -1348.8843        12.21

        4          -1348.6392       0.2450

        5          -1348.6389       0.3572E-03

        6          -1348.6389       0.1459E-08

 

 

    Iteration       Log. lik.         Step      End-points     Orthogonality

                                     length    0          1      criterion

    ________________________________________________________________________

        1          -1201.2862        1.0000    fixed  fixed       16.583

        2          -1099.4599        1.0000    fixed  fixed       2.3966

        3          -1072.8791        1.0000    fixed  fixed       1.6688

        4          -1060.9384        1.0000    fixed  fixed      0.76140

        5          -1058.7045        1.0000    fixed  fixed      0.36472

        6          -1057.4513        0.5000    fixed  fixed       2.4320

        7          -1056.8794        1.0000    fixed  fixed      0.42904

        8          -1056.8671        1.0000    fixed  fixed      0.38954

        9          -1056.8670        1.0000    fixed  fixed

 

<S> dis m

 

    X-vars            Y-var             Case-var

    ________________________________________________

    cons              prenat            mom

    kid3p                               cluster

    mom25p

    order23

    order46

    order7p

    indnospa

    indspa

    momedpri

    momedsec

    husedpri

    husedsec

    huseddk

    husprof

    husagrself

    husagremp

    husskilled

    toilet

    tvnotdaily

    tvdaily

    pcind81

    ssdist

 

    Univariate model

    Standard logit

    Gaussian random effects

 

    Number of observations             =    2449

    Number of level 2 cases            =    1558

    Number of level 3 cases            =     161

 

    X-var df           =    22

    Scale df           =     2

 

    Log likelihood =     -1056.8670     on    2425 residual degrees of freedom

 

<S> dis e

 

    Parameter              Estimate         Std. Err.

    ___________________________________________________

    cons                    3.5458           1.7266

    kid3p                  -1.0008          0.30401

    mom25p                  1.0253          0.52416

    order23               -0.70703          0.45506

    order46               -0.50441          0.64071

    order7p               -0.97271          0.84425

    indnospa               -5.3249           1.5925

    indspa                 -2.8742           1.0720

    momedpri                1.8261          0.66167

    momedsec                3.9093           1.6070

    husedpri               0.80819          0.68186

    husedsec                3.4292           1.3501

    huseddk                0.57824E-01       1.0320

    husprof               -0.38402           1.5648

    husagrself             -1.7913           1.4116

    husagremp              -2.5822           1.4512

    husskilled            -0.74278           1.4095

    toilet                  1.8823          0.95965

    tvnotdaily              1.4256           1.3987

    tvdaily                 1.4827          0.94110

    pcind81                -4.5496           1.6165

    ssdist                -0.50489E-01      0.19281E-01

    sclev2                  7.0869          0.94235

    sclev3                  3.6790          0.61058

 

<S> stop