Example C1 Continuous response model

 

The data we use in this example are a sub-sample from the 1982 High School and Beyond Survey (Raudenbush, Bryk, 2002), and include information on 7,185 students nested within 160 schools: 90 public and 70 Catholic.  Sample sizes vary from 14 to 67 students per school.

 

Reference

 

Raudenbush, S.W., Bryk, A.S., 2002, Heirarchical Linear Models, Thousand Oaks, CA. Sage

 

 

Data description

 

Number of observations (rows): 7185

Number of variables (columns): 15

 

The variables include the following:

 

school=school identifier

student=student identifier

minority =1 if student is from an ethnic minority, 0 = other)

gender = 1 if student is female, 0 otherwise

ses = a standardized scale constructed from variables measuring parental education, occupation, and income, socio economic status

meanses = mean of the SES values for the students in this school

mathach= a measure of the students mathematics achievement

size = school enrolment

sector =1 if  school is from the Catholic sector, 0 = public

pracad = proportion of students in the academic track

disclim = a scale measuring disciplinary climate

himnty =1 if more than 40% minority enrolment, 0 if less than 40%)

 

 

The first few lines of hsb.dat look like

 

 

 

Sabre commands

 

out hsb1.log

trace hsb1.trace

data school student minority gender ses meanses cses mathach size sector &

     pracad desclim himinty meansesbycses sectorbycses

read hsb.dat

case school

yvar mathach

family g

constant cons

lfit cons

dis m

dis e

mass 64

fit cons

dis m

dis e

lfit meanses cons

dis m

dis e

fit meanses cons

dis m

dis e

stop

 

 

Sabre log file

 

<S> trace hsb1.trace

<S> data school student minority gender ses meanses cses mathach size sector &

<S>      pracad desclim himinty meansesbycses sectorbycses

<S> read hsb.dat

 

       7185 observations in dataset

 

<S> case school

<S> yvar mathach

<S> family g

<S> constant cons

<S> lfit cons

 

    Iteration       Log. lik.       Difference

    __________________________________________

        1          -24049.866

 

<S> dis m

 

    X-vars            Y-var

    ______________________________

    cons              mathach

 

    Univariate model

    Standard linear

 

    Number of observations             =    7185

 

    X-var df           =     1

 

    Log likelihood =     -24049.866     on    7184 residual degrees of freedom

 

<S> dis e

 

    Parameter              Estimate         Std. Err.

    ___________________________________________________

    cons                    12.748          0.81145E-01

    sigma                   6.8782

 

<S> mass 64

<S> fit cons

 

    Initial Homogeneous Fit:

 

    Iteration       Log. lik.       Difference

    __________________________________________

        1          -24049.866

 

 

    Iteration       Log. lik.         Step      End-points     Orthogonality

                                     length    0          1      criterion

    ________________________________________________________________________

        1          -23771.600        1.0000    fixed  fixed       448.87

        2          -23695.571        1.0000    fixed  fixed       835.31

        3          -23652.804        1.0000    fixed  fixed       688.55

        4          -23616.853        1.0000    fixed  fixed       404.57

        5          -23590.245        1.0000    fixed  fixed       243.42

        6          -23572.704        1.0000    fixed  fixed       101.08

        7          -23559.124        1.0000    fixed  fixed       43.816

        8          -23557.935        1.0000    fixed  fixed       31.439

        9          -23557.905        1.0000    fixed  fixed       29.654

       10          -23557.905        1.0000    fixed  fixed

 

<S> dis m

 

    X-vars            Y-var             Case-var

    ________________________________________________

    cons              mathach           school

 

    Univariate model

    Standard linear

    Gaussian random effects

 

    Number of observations             =    7185

    Number of cases                    =     160

 

    X-var df           =     1

    Sigma df           =     1

    Scale df           =     1

 

    Log likelihood =     -23557.905     on    7182 residual degrees of freedom

 

<S> dis e

 

    Parameter              Estimate         Std. Err.

    ___________________________________________________

    cons                    12.637          0.24359

    sigma                   6.2569          0.52794E-01

    scale                   2.9246          0.18257

 

<S> lfit meanses cons

 

    Iteration       Log. lik.       Difference

    __________________________________________

        1          -23598.190

 

<S> dis m

 

    X-vars            Y-var

    ______________________________

    cons              mathach

    meanses

 

    Univariate model

    Standard linear

 

    Number of observations             =    7185

 

    X-var df           =     2

 

    Log likelihood =     -23598.190     on    7183 residual degrees of freedom

 

<S> dis e

 

    Parameter              Estimate         Std. Err.

    ___________________________________________________

    cons                    12.713          0.76215E-01

    meanses                 5.7168          0.18429

    sigma                   6.4596

 

<S> fit meanses cons

 

    Initial Homogeneous Fit:

 

    Iteration       Log. lik.       Difference

    __________________________________________

        1          -23598.190

 

 

    Iteration       Log. lik.         Step      End-points     Orthogonality

                                     length    0          1      criterion

    ________________________________________________________________________

        1          -23502.667        1.0000    fixed  fixed       260.90

        2          -23489.442        1.0000    fixed  fixed       200.22

        3          -23483.785        1.0000    fixed  fixed       181.86

        4          -23481.131        1.0000    fixed  fixed       180.44

        5          -23480.072        1.0000    fixed  fixed       180.76

        6          -23479.711        1.0000    fixed  fixed       88.600

        7          -23479.554        1.0000    fixed  fixed       54.074

        8          -23479.554        1.0000    fixed  fixed       53.557

        9          -23479.554        1.0000    fixed  fixed

 

<S> dis m

 

    X-vars            Y-var             Case-var

    ________________________________________________

    cons              mathach           school

    meanses

 

    Univariate model

    Standard linear

    Gaussian random effects

 

    Number of observations             =    7185

    Number of cases                    =     160

 

    X-var df           =     2

    Sigma df           =     1

    Scale df           =     1

 

    Log likelihood =     -23479.554     on    7181 residual degrees of freedom

 

<S> dis e

 

    Parameter              Estimate         Std. Err.

    ___________________________________________________

    cons                    12.650          0.14834

    meanses                 5.8629          0.35917

    sigma                   6.2576          0.52800E-01

    scale                   1.6103          0.12314

 

<S> stop