Example C4 Ordered
response model
Rowan, Raudenbush, and Cheong (1993) analysed data from a
1990 survey of teachers working in 16 public schools in
Reference
Rowan, B., Raudenbush, S., and Cheong, Y. (1993). Teaching as
a non-routine task: implications for the organizational design of schools, Educational
Administration Quarterly, 29(4), 479-500.
Data description
Number of observations (rows): 680
Number of variables (columns): 4
We use a subset of the data with the following:variables:
tcommit = the three-category measure of teacher commitment
taskvar = teachers' perception of task variety, this
assesses the extent to which teachers followed the same teaching routines each
day, performed the same tasks each day, had something new happening in their
job each day, and liked the variety present in their work.
tcontrol = this is a school level variable, it is a measure of teacher control. This variable was constructed by aggregating nine-item scale scores of teachers within a school, it indicates teacher control over school policy issues such as student behaviour codes, content of in-service programs, student grouping, school curriculum, and text selection; and control over classroom issues such as teaching content and techniques, and amount of homework assigned.
schlid = school identifier
The first few lines of the teacher2.dat data set looks like
Sabre commands
out teacher.log
trace teacher.trace
data tcommit tcontrol schlid
read teacher1.dat
case schlid
yvar tcommit
ordered y
constant cons
lfit
dis m
dis e
fit
dis m
dis e
data tcommit taskvar tcontrol schlid
read teacher2.dat
case schlid
yvar tcommit
ordered y
constant cons
lfit tcontrol taskvar
dis m
dis e
fit tcontrol taskvar
dis m
dis e
stop
Sabre log file
<S> trace teacher.trace
<S> data tcommit tcontrol schlid
<S> read teacher1.dat
661
observations in dataset
<S> case schlid
<S> yvar tcommit
<S> ordered y
<S> constant cons
<S> lfit
Iteration Log. lik. Step End-points Orthogonality
length 0 1
criterion
________________________________________________________________________
1 -794.26611 1.0000 fixed
fixed 695.53
2 -760.55338 1.0000 fixed
fixed 546.97
3 -729.92355 1.0000 fixed
fixed 415.75
4 -703.71167 1.0000 fixed
fixed 306.32
5 -683.74061 1.0000 fixed
fixed 225.25
6 -671.62623 1.0000 fixed
fixed 91.297
7 -664.94055 1.0000 fixed
fixed 102.17
8 -664.93407 1.0000 fixed
fixed 198.41
9 -664.93407 1.0000 fixed
fixed
<S> dis m
X-vars Y-var
______________________________
tcommit
Univariate
model
Standard
ordered logit
Number of
observations = 661
X-var df =
0
Log likelihood
= -664.93407 on
661 residual degrees of freedom
<S> dis e
Parameter Estimate Std. Err.
___________________________________________________
cut1 0.17290 0.78082E-01
cut2 1.1831 0.91804E-01
<S> fit
Initial
Homogeneous Fit:
Iteration Log. lik. Step End-points Orthogonality
length 0 1
criterion
________________________________________________________________________
1 -794.26611 1.0000 fixed
fixed 695.53
2 -760.55338 1.0000 fixed
fixed 546.97
3 -729.92355 1.0000 fixed
fixed 415.75
4 -703.71167 1.0000 fixed
fixed 306.32
5 -683.74061 1.0000 fixed
fixed 225.25
6 -671.62623 1.0000 fixed
fixed 91.297
7 -664.94055 1.0000 fixed
fixed 102.17
8 -664.93407 1.0000 fixed
fixed 198.41
9 -664.93407 1.0000 fixed
fixed
Iteration Log. lik. Step End-points Orthogonality
length 0
1 criterion
________________________________________________________________________
1 -668.49604 1.0000 fixed
fixed 19.308
2 -663.21677 1.0000 fixed
fixed 64.229
3 -662.94056 1.0000 fixed
fixed 22.566
4 -662.75542 0.5000 fixed
fixed 40.415
5 -662.69386 1.0000 fixed
fixed 30.343
6 -662.66613 0.5000 fixed
fixed 36.996
7 -662.66290 1.0000 fixed
fixed 46.090
8 -662.66290 1.0000 fixed
fixed
<S> dis m
X-vars Y-var Case-var
________________________________________________
tcommit schlid
Univariate
model
Standard
ordered logit
Gaussian random
effects
Number of
observations = 661
Number of
cases = 16
X-var df =
0
Scale df =
1
Log likelihood
= -662.66290 on
660 residual degrees of freedom
<S> dis e
Parameter Estimate Std. Err.
___________________________________________________
cut1 0.21711 0.12131
cut2 1.2480 0.13296
scale 0.33527 0.13507
<S> data tcommit taskvar tcontrol schlid
--- new
analysis begins
<S> read teacher2.dat
650
observations in dataset
<S> case schlid
<S> yvar tcommit
<S> ordered y
<S> constant cons
<S> lfit tcontrol taskvar
Iteration Log. lik. Step End-points Orthogonality
length 0
1 criterion
________________________________________________________________________
1 -781.22511 1.0000 fixed
fixed 687.60
2 -748.47921 1.0000 fixed
fixed 555.28
3 -718.45363 1.0000 fixed
fixed 440.45
4 -692.12263 1.0000 fixed
fixed 344.28
5 -670.56012 1.0000 fixed
fixed 232.94
6 -654.29800 1.0000
fixed fixed 28.848
7 -634.26243 1.0000 fixed
fixed 13.519
8 -634.05988 1.0000 fixed
fixed 10.852
9 -634.05978 1.0000 fixed
fixed
<S> dis m
X-vars Y-var
______________________________
tcontrol tcommit
taskvar
Univariate
model
Standard
ordered logit
Number of
observations = 650
X-var df =
2
Log likelihood
= -634.05978 on
648 residual degrees of freedom
<S> dis e
Parameter Estimate Std. Err.
___________________________________________________
tcontrol -1.5410 0.36060
taskvar -0.34881 0.87745E-01
cut1 0.19283 0.80942E-01
cut2 1.2477 0.95459E-01
<S> fit tcontrol taskvar
Initial
Homogeneous Fit:
Iteration Log. lik. Step End-points Orthogonality
length 0 1
criterion
________________________________________________________________________
1 -781.22511 1.0000 fixed
fixed 687.60
2 -748.47921 1.0000 fixed
fixed 555.28
3 -718.45363 1.0000 fixed
fixed 440.45
4 -692.12263 1.0000 fixed
fixed 344.28
5 -670.56012 1.0000
fixed fixed
232.94
6 -654.29800 1.0000 fixed
fixed 28.848
7 -634.26243 1.0000 fixed
fixed 13.519
8 -634.05988 1.0000 fixed
fixed 10.852
9 -634.05978 1.0000 fixed
fixed
Iteration Log. lik. Step End-points Orthogonality
length 0 1
criterion
________________________________________________________________________
1 -647.63394 1.0000 fixed
fixed 3.8222
2 -641.05401 0.5000 fixed
fixed 0.91543
3 -638.78637 0.2500 fixed
fixed 1.6313
4 -637.15574 0.1250 fixed
fixed 10.879
5 -636.22360 0.5000 fixed
fixed 10.812
6 -634.52722 1.0000 fixed
fixed 39.359
7 -634.06129 1.0000 fixed
fixed 60.755
8 -634.05979 1.0000 fixed
fixed 32.072
9 -634.05978 1.0000 fixed
fixed
<S> dis m
X-vars Y-var Case-var
________________________________________________
tcontrol tcommit schlid
taskvar
Univariate
model
Standard
ordered logit
Gaussian random
effects
Number of
observations = 650
Number of
cases = 16
X-var df =
2
Scale df =
1
Log likelihood
= -634.05978 on
647 residual degrees of freedom
<S> dis e
Parameter Estimate Std. Err.
___________________________________________________
tcontrol -1.5410 0.36060
taskvar -0.34881 0.87745E-01
cut1 0.19283 0.80942E-01
cut2 1.2477 0.95459E-01
scale 0.54780E-07 0.17659
<S> stop