Example L5 Ordered
response model
In this example we analyse ordinal data on changes in the severity of Schizophrenia in data from the National Institute of Mental Health (NIMH), see Rabe-Hesketh and Skrondal (2005, Ch 5). Patients were randomly allocated to 1 of 4 treatments (Placebo, Chlorpromazine, Fluphenazine, Thioridazine) and examined weekly for up to 6 weeks. The data have previously been analysed by Hedeker and Gibbons (1996a), Gibbons et al. (1998) and Gibbons and Hedeker (1994). In this example we follow Rabe-Hesketh and Skrondal (2005, Ch 5) and combine the treatments Chlorpromazine, Fluphenazine and Thioridazine.
Data description
Number of observations (rows): 1603
Number of variables (columns): 8
Variables:
id=subject identifier
week=week (0,1,2,…,6) of assessment since randomisation to treatment;
imps=score on item 79 of the Inpatient Multidimensional Psychiatric Scale (IMPS) of Lorr and Klextt (1966).
treatment=1 if subject was in the treatment group (drug), 0 otherwise;
Following Rabe-Hesketh and Skrondal (2005, Ch 5) and Hedeker and Gibbons (1996a) we recode the imps variable into impso, an ordinal variable with 4 categories, i.e.
impso=1 if 1<=imps<=2.4;
impso=2 if 2.5<=imps<4.4
impso=3 if 4.5<=imps<=5.4
impso=4 if 5.5<=imps<=7
Following Rabe-Hesketh and Skrondal (2005, Ch 5) we also use the square root of week (weeksqrt) instead of week in its raw form as an explanatory variable. Similarly we also produce a new variable from the interaction (interact) of weeksqrt and treatment.
References
Gibbons, R. D., Hedeker, C., Waterneaux, C., & Davis, J.M., (1988), Random regression models: A comprehensive approach to the analysis of longitudinal psychiatric data, Psychopharmacology Bulletin, 24, 438-443
Gibbons, R. D., & Hedeker, C., (1994), Application of random effects probit regression models, Journal of Consulting and Clinical Psyschology.
Hedeker, D., & Gibbons, R.D., (1996), Applied
longitudinal data anlaysis, 
Rabe-Hesketh, S., and Skrondal, A., (2005), Multilevel and Longitudinal Modelling using Stata, Stata Press, Stata Corp, College Station, Texas.
The first few lines of schiz.dat look like

Sabre commands
out schiz.log
trace schiz.trace
data id imps week treatment sex weeksqrt interact impso
read schiz.dat
case id
yvar impso
ordered y
lfit weeksqrt treatment interact
dis m
dis e
fit weeksqrt treatment interact
dis m
dis e
stop
Sabre log file
<S> trace schiz.trace
<S> data id imps week treatment sex weeksqrt
interact impso
<S> read schiz.dat
       1603
observations in dataset
<S> case id
<S> yvar impso
<S> ordered y
<S> lfit weeksqrt treatment interact
    Iteration       Log. lik.         Step      End-points     Orthogonality
                                    
length    0          1     
criterion
   
________________________________________________________________________
        1          -2239.6731        1.0000    fixed 
fixed       18.971
        2          -1947.5622        0.5000    fixed 
fixed       46.248
        3          -1885.7509        1.0000    fixed 
fixed       131.39
        4          -1879.9699        1.0000    fixed 
fixed       248.84
        5          -1878.6522        1.0000    fixed 
fixed       1158.2
        6          -1878.2740        1.0000    fixed 
fixed       253.33
        7          -1878.0969        1.0000    fixed 
fixed       54.836
        8          -1878.0969        1.0000    fixed 
fixed
<S> dis m
    X-vars            Y-var
   
______________________________
    weeksqrt          impso
    treatment
    interact
    Univariate
model
    Standard
ordered logit
    Number of
observations             =    1603
    X-var df           =    
3
    Log likelihood
=     -1878.0969     on   
1600 residual degrees of freedom
<S> dis e
    Parameter              Estimate         Std. Err.
   
___________________________________________________
    weeksqrt              -0.53665          0.11081
    treatment             -0.60428E-03      0.18833
    interact              -0.75097          0.12768
    cut1                   -3.8073          0.18986
    cut2                   -1.7602          0.17027
    cut3                  -0.42211          0.16363
<S> fit weeksqrt treatment interact
    Initial
Homogeneous Fit:
    Iteration       Log. lik.         Step      End-points     Orthogonality
                                    
length    0          1     
criterion
   
________________________________________________________________________
        1          -2239.6731        1.0000    fixed 
fixed       18.971
        2          -1947.5622        0.5000    fixed 
fixed       46.248
        3          -1885.7509        1.0000    fixed 
fixed       131.39
        4          -1879.9699        1.0000    fixed 
fixed       248.84
        5          -1878.6522        1.0000    fixed 
fixed       1158.2
        6          -1878.2740        1.0000    fixed 
fixed       253.33
        7          -1878.0969        1.0000    fixed 
fixed       54.836
        8          -1878.0969        1.0000    fixed 
fixed
    Iteration       Log. lik.         Step      End-points     Orthogonality
                                    
length    0          1     
criterion
   
________________________________________________________________________
        1          -1775.2726        1.0000    fixed 
fixed       14.707
        2          -1717.2806        1.0000    fixed 
fixed       12.350
        3          -1703.2212        1.0000    fixed 
fixed       119.24
        4          -1701.5195        1.0000    fixed 
fixed       340.03
        5          -1701.2283        1.0000    fixed 
fixed       337.78
        6          -1701.1745        1.0000    fixed 
fixed       211.94
        7          -1701.1622        1.0000    fixed 
fixed       18.610
        8          -1701.1622        1.0000    fixed 
fixed
<S> dis m
    X-vars            Y-var             Case-var
   
________________________________________________
    weeksqrt          impso             id
    treatment
    interact
    Univariate
model
    Standard
ordered logit
    Gaussian random
effects
    Number of
observations             =    1603
    Number of
cases                    =     437
    X-var df           =    
3
    Scale df           =    
1
    Log likelihood
=     -1701.1622     on   
1599 residual degrees of freedom
<S> dis e
    Parameter              Estimate         Std. Err.
   
___________________________________________________
    weeksqrt              -0.76775          0.13107
    treatment             -0.81896E-01      0.31086
    interact               -1.2069          0.15280
    cut1                   -5.8917          0.33345
    cut2                   -2.8572          0.28969
    cut3                  -0.73532          0.27343
    scale                   1.9520          0.12113
<S> stop