Example L6 Count response model

 

In this example we use data (drvisits.dat) from the German Socio-Economic Panel (SEOP) on the self reported number of visits by women to the doctor, just before a major health care reform in 1997 and just after the reform. The health reform raised prescription charges by 200% and imposed limits on fees charged by doctors. This data was analysed by Winkelmann (2004), Rabe-Hesketh and Skrondal (2005, Ch 6) who note that it is interesting to establish if the health reforms tended to reduce visits by the women to the doctor. Following Rabe-Hesketh and Skrondal (2005, Ch 5) we consider the subset of women who were working full time in the 1996 and 1998 panels of SEOP.

 

Rabe-Hesketh and Skrondal (2005, Ch 5) show that fewer than 50% of the women provide data for both the 1996 and 1998 waves. For the purposes of this analysis and like Rabe-Hesketh and Skrondal (2005, Ch 5) we treat the missing data as ignorable and use all the observed responses.

 

 

References

 

Rabe-Hesketh, S., and Skrondal, A., (2005), Multilevel and Longitudinal Modelling using Stata, Stata Press, Stata Corp, College Station, Texas.

Winkelmann, R., (2004), Healthcare reform and thye number of doctor visits: an econometric analysis, Journal of Applied Econometrics, 19, 455-472.

 

 

Data description

 

Number of observations (rows): 2227

Number of variables (columns): 10

 

 

The subset of variables we use are:

 

id=person identifier;

numvisits=self reported number of visits to the doctor during the previous 3 months;

age=age in years (20 to 60);

educ=education in years;

married=1 if the woman was married, 0 otherwise;

badh=1 if the self reported state of health was very poor or poor, 0 otherwise;

loginc=logarithm of household income in 1995 DM,

reform=1 for the 1998 panel data, 0 otherwise;

 

 

The first few lines of drvisits.dat look like

 

 

 

Sabre commands

 

out drvisits.log

trace drvisits.trace

data id numvisit age educ married badh loginc reform summer obs

read drvisits.dat

case obs

yvar numvisit

family p

constant cons

lfit reform age educ married badh loginc summer cons

dis m

dis e

fit reform age educ married badh loginc summer cons

dis m

dis e

case id

lfit reform age educ married badh loginc summer cons

dis m

dis e

fit reform age educ married badh loginc summer cons

dis m

dis e

stop

 

 

 

Sabre log file

 

<S> trace drvisits.trace

<S> data id numvisit age educ married badh loginc reform summer obs

<S> read drvisits.dat

 

       2227 observations in dataset

 

<S> case obs

<S> yvar numvisit

<S> family p

<S> constant cons

<S> lfit reform age educ married badh loginc summer cons

 

    Iteration       Log. lik.       Difference

    __________________________________________

        1          -7502.8826

        2          -6041.6484        1461.

        3          -5943.5095        98.14

        4          -5942.6925       0.8170

        5          -5942.6924       0.8498E-04

 

<S> dis m

 

    X-vars            Y-var

    ______________________________

    cons              numvisit

    reform

    age

    educ

    married

    badh

    loginc

    summer

 

    Univariate model

    Standard Poisson

 

    Number of observations             =    2227

 

    X-var df           =     8

 

    Log likelihood =     -5942.6924     on    2219 residual degrees of freedom

 

<S> dis e

 

    Parameter              Estimate         Std. Err.

    ___________________________________________________

    cons                  -0.41286          0.26913

    reform                -0.14047          0.26580E-01

    age                    0.43611E-02      0.13031E-02

    educ                  -0.10653E-01      0.60102E-02

    married                0.41662E-01      0.27869E-01

    badh                    1.1330          0.30307E-01

    loginc                 0.14890          0.36072E-01

    summer                 0.10216E-01      0.40409E-01

 

<S> fit reform age educ married badh loginc summer cons

 

    Initial Homogeneous Fit:

 

    Iteration       Log. lik.       Difference

    __________________________________________

        1          -7502.8826

        2          -6041.6484        1461.

        3          -5943.5095        98.14

        4          -5942.6925       0.8170

        5          -5942.6924       0.8498E-04

 

 

    Iteration       Log. lik.         Step      End-points     Orthogonality

                                     length    0          1      criterion

    ________________________________________________________________________

        1          -4859.3150        1.0000    fixed  fixed       830.40

        2          -4642.0020        1.0000    fixed  fixed       2502.3

        3          -4578.7722        1.0000    fixed  fixed       607.18

        4          -4560.8207        1.0000    fixed  fixed       289.02

        5          -4556.2858        1.0000    fixed  fixed       225.79

        6          -4555.0430        1.0000    fixed  fixed       315.35

        7          -4552.5998        1.0000    fixed  fixed       13.605

        8          -4552.4882        1.0000    fixed  fixed       155.27

        9          -4552.4881        1.0000    fixed  fixed       181.54

       10          -4552.4881        1.0000    fixed  fixed

 

<S> dis m

 

    X-vars            Y-var             Case-var

    ________________________________________________

    cons              numvisit          obs

    reform

    age

    educ

    married

    badh

    loginc

    summer

 

    Univariate model

    Standard Poisson

    Gaussian random effects

 

    Number of observations             =    2227

    Number of cases                    =    2227

 

    X-var df           =     8

    Scale df           =     1

 

    Log likelihood =     -4552.4881     on    2218 residual degrees of freedom

 

<S> dis e

 

    Parameter              Estimate         Std. Err.

    ___________________________________________________

    cons                   -1.2784          0.50028

    reform                -0.56688E-01      0.47767E-01

    age                    0.51025E-02      0.25158E-02

    educ                   0.92880E-02      0.11103E-01

    married                0.11339E-01      0.52326E-01

    badh                    1.1430          0.61469E-01

    loginc                 0.16892          0.66601E-01

    summer                -0.51553E-01      0.75535E-01

    scale                  0.90172          0.19394E-01

 

<S> case id

<S> lfit reform age educ married badh loginc summer cons

 

    Iteration       Log. lik.       Difference

    __________________________________________

        1          -7502.8826

        2          -6041.6484        1461.

        3          -5943.5095        98.14

        4          -5942.6925       0.8170

        5          -5942.6924       0.8498E-04

 

<S> dis m

 

    X-vars            Y-var

    ______________________________

    cons              numvisit

    reform

    age

    educ

    married

    badh

    loginc

    summer

 

    Univariate model

    Standard Poisson

 

    Number of observations             =    2227

 

    X-var df           =     8

 

    Log likelihood =     -5942.6924     on    2219 residual degrees of freedom

 

<S> dis e

 

    Parameter              Estimate         Std. Err.

    ___________________________________________________

    cons                  -0.41286          0.26913

    reform                -0.14047          0.26580E-01

    age                    0.43611E-02      0.13031E-02

    educ                  -0.10653E-01      0.60102E-02

    married                0.41662E-01      0.27869E-01

    badh                    1.1330          0.30307E-01

    loginc                 0.14890          0.36072E-01

    summer                 0.10216E-01      0.40409E-01

 

<S> fit reform age educ married badh loginc summer cons

 

    Initial Homogeneous Fit:

 

    Iteration       Log. lik.       Difference

    __________________________________________

        1          -7502.8826

        2          -6041.6484        1461.

        3          -5943.5095        98.14

        4          -5942.6925       0.8170

        5          -5942.6924       0.8498E-04

 

 

    Iteration       Log. lik.         Step      End-points     Orthogonality

                                     length    0          1      criterion

    ________________________________________________________________________

        1          -4886.1681        1.0000    fixed  fixed       511.63

        2          -4718.6770        1.0000    fixed  fixed       3227.1

        3          -4665.3282        1.0000    fixed  fixed       2056.0

        4          -4655.1747        1.0000    fixed  fixed       706.59

        5          -4652.5395        1.0000    fixed  fixed       643.44

        6          -4651.1922        1.0000    fixed  fixed       335.76

        7          -4650.3290        1.0000    fixed  fixed       213.16

        8          -4649.6786        1.0000    fixed  fixed       144.40

        9          -4649.0833        1.0000    fixed  fixed       146.90

       10          -4648.5772        1.0000    fixed  fixed       51.409

       11          -4647.9713        1.0000    fixed  fixed       33.725

       12          -4647.6488        1.0000    fixed  fixed       11.365

       13          -4647.4903        0.1250    fixed  fixed       15.728

       14          -4647.3924        1.0000    fixed  fixed       26.114

       15          -4647.3923        1.0000    fixed  fixed       31.637

       16          -4647.3923        1.0000    fixed  fixed

 

<S> dis m

 

    X-vars            Y-var             Case-var

    ________________________________________________

    cons              numvisit          id

    reform

    age

    educ

    married

    badh

    loginc

    summer

 

    Univariate model

    Standard Poisson

    Gaussian random effects

 

    Number of observations             =    2227

    Number of cases                    =    1518

 

    X-var df           =     8

    Scale df           =     1

 

    Log likelihood =     -4647.3923     on    2218 residual degrees of freedom

 

<S> dis e

 

    Parameter              Estimate         Std. Err.

    ___________________________________________________

    cons                  -0.88590          0.47693

    reform                -0.40069E-01      0.31762E-01

    age                    0.11508E-01      0.23579E-02

    educ                   0.10743E-01      0.13271E-01

    married               -0.10293E-01      0.50940E-01

    badh                   0.95315          0.53949E-01

    loginc                 0.99095E-01      0.64696E-01

    summer                -0.16654          0.57296E-01

    scale                  0.89249          0.21100E-01

 

<S> stop