Example L7 Binary
response (survival) model (filled and lapsed)
These
examples are from a study that provides the first estimates of the determinants
of employer search in the
We treat the 'filled' and 'lapsed' datasets as if they
were independent, both data sets have 390,432 binary observations (at the
weekly level) on 12,840 vacancies. For the first risk ('filled') the final
response for each vacancy is 1 at the point where the vacancy fills, and
similarly for the ('lapsed') risk. At all other weeks the responses are zero.
There are 7,234 filled vacancies and 5,606 lapsed vacancies.
For each type of risk we used a 26-piece non-parametric baseline hazard with 55 covariates.
Filled durations
The first few lines and columns of vac4-filled.dat look like
Sabre commands
(filled analysis)
out filled.log
trace filled.trace
data ij provider vacnum dayrel appren inhouse sic0 sic1
sic2 sic3 sic4 &
sic5 sic6 sic7
sic8 sic9 censored td centre grade2 grade3 grade4 &
written
noemps1 noemps2 noemps3 noemps4 year d n dn n1_d lnwd1_n &
lnwdn lnpopden
lnrelstaff nonman skilled english maths eng_maths &
science
othersub olderapp year2 year3 year4 year5 year6 year7 year8 &
month1 month2
month3 month4 month5 month6 month7 month8 month9 &
month10
month11 month12 j lnu18 lnvj y d_1 d_2 d_3 d_4 d_5 d_6 d_7 &
d_8 d_9 d_10
d_11 d_12 d_13 d_14 d_15 d_16 d_17 d_18 d_19 d_20 d_21 &
d_22 d_23 d_24
d_25 d_26 type
read /scratch/hpc/22/stott/vac4-filled.dat
case vacnum
yvar y
fit d_1 d_2 d_3 d_4 d_5 d_6 d_7 d_8 d_9 d_10 d_11 d_12
d_13 d_14 d_15 d_16 &
d_17 d_18 d_19
d_20 d_21 d_22 d_23 d_24 d_25 d_26 noemps2 noemps3 &
noemps4 sic0
sic1 sic2 sic3 sic4 sic5 sic7 sic8 sic9 centre provider &
lnwd1_n dn
lnwdn n1_d nonman skilled inhouse dayrel appren grade2 &
grade3 grade4
english maths eng_maths science othersub olderapp &
written lnu18
lnvj lnpopden lnrelstaff year2 year3 year4 year5 year6 &
year7 year8
month1 month2 month3 month4 month6 month7 month8 month9 &
month10 month11
month12
dis m
dis e
stop
Sabre log file
<S> trace filled.trace
<S> data ij provider vacnum dayrel appren inhouse
sic0 sic1 sic2 sic3 sic4 &
<S> sic5
sic6 sic7 sic8 sic9 censored td centre grade2 grade3 grade4 &
<S>
written noemps1 noemps2 noemps3 noemps4 year d n dn n1_d lnwd1_n &
<S>
lnwdn lnpopden lnrelstaff nonman skilled english maths eng_maths &
<S>
science othersub olderapp year2 year3 year4 year5 year6 year7 year8
&
<S>
month1 month2 month3 month4 month5 month6 month7 month8 month9 &
<S>
month10 month11 month12 j lnu18 lnvj y d_1 d_2 d_3 d_4 d_5 d_6 d_7 &
<S> d_8
d_9 d_10 d_11 d_12 d_13 d_14 d_15 d_16 d_17 d_18 d_19 d_20 d_21 &
<S> d_22
d_23 d_24 d_25 d_26 type
<S> read /scratch/hpc/22/stott/vac4-filled.dat
390432
observations in dataset
<S> case vacnum
<S> yvar y
<S> link c
<S> fit d_1 d_2 d_3 d_4 d_5 d_6 d_7 d_8 d_9 d_10
d_11 d_12 d_13 d_14 d_15 d_16 &
<S> d_17
d_18 d_19 d_20 d_21 d_22 d_23 d_24 d_25 d_26 noemps2 noemps3 &
<S>
noemps4 sic0 sic1 sic2 sic3 sic4 sic5 sic7 sic8 sic9 centre provider
&
<S>
lnwd1_n dn lnwdn n1_d nonman skilled inhouse dayrel appren grade2 &
<S>
grade3 grade4 english maths eng_maths science othersub olderapp &
<S>
written lnu18 lnvj lnpopden lnrelstaff year2 year3 year4 year5 year6
&
<S> year7
year8 month1 month2 month3 month4 month6 month7 month8 month9 &
<S>
month10 month11 month12
Initial
Homogeneous Fit:
Iteration Log. lik. Difference
__________________________________________
1 -386516.06
2 -84780.650 0.3017E+06
3 -45785.228 0.3900E+05
4 -35969.984 9815.
5 -33826.874 2143.
6 -33489.729 337.1
7
-33465.995 23.73
8 -33465.694 0.3004
9 -33465.694 0.1636E-03
10 -33465.694 0.1433E-08
Iteration Log. lik. Step End-points Orthogonality
length 0 1
criterion
________________________________________________________________________
1 -33757.916 1.0000 fixed
fixed 67.679
2 -33711.882 0.5000
fixed fixed 15.600
3 -33495.120 1.0000 fixed
fixed 6.5731
4 -33481.845 1.0000 fixed
fixed 4.8202
5 -33469.033 0.5000 fixed
fixed 1130.8
6 -33430.503 1.0000 fixed
fixed 7.3092
7 -33424.272 1.0000 fixed
fixed 2.7345
8 -33424.160 1.0000 fixed
fixed 1.9924
9 -33424.160 1.0000
fixed fixed 2.1109
10 -33424.160 1.0000 fixed
fixed
<S> dis m
X-vars Y-var Case-var
________________________________________________
d_1 y vacnum
d_2
d_3
d_4
d_5
d_6
d_7
d_8
d_9
d_10
d_11
d_12
d_13
d_14
d_15
d_16
d_17
d_18
d_19
d_20
d_21
d_22
d_23
d_24
d_25
d_26
noemps2
noemps3
noemps4
sic0
sic1
sic2
sic3
sic4
sic5
sic7
sic8
sic9
centre
provider
lnwd1_n
dn
lnwdn
n1_d
nonman
skilled
inhouse
dayrel
appren
grade2
grade3
grade4
english
maths
eng_maths
science
othersub
olderapp
written
lnu18
lnvj
lnpopden
lnrelstaff
year2
year3
year4
year5
year6
year7
year8
month1
month2
month3
month4
month6
month7
month8
month9
month10
month11
month12
Univariate
model
Standard
complementary log-log
Gaussian random
effects
Number of
observations = 390432
Number of
cases = 12840
X-var df =
81
Scale df =
1
Log likelihood
= -33424.160 on
390350 residual degrees of freedom
<S> dis e
Parameter Estimate Std. Err.
___________________________________________________
d_1 -6.4338 0.51637
d_2 -7.0011 0.50937
d_3 -7.7040 0.50843
d_4 -7.6598 0.50658
d_5 -7.5495 0.50456
d_6 -7.4617 0.50267
d_7 -7.1142 0.49965
d_8 -6.8503 0.49690
d_9 -7.1359 0.49626
d_10 -7.3896 0.49655
d_11 -7.2214 0.49481
d_12 -7.1999 0.49399
d_13 -7.1767 0.49322
d_14 -7.0299 0.49177
d_15 -7.0685 0.48377
d_16 -7.0656 0.48028
d_17 -7.1705 0.47878
d_18 -7.2494 0.47836
d_19 -7.4207 0.47943
d_20 -7.5001 0.48069
d_21 -7.5973 0.47503
d_22 -7.6094 0.47796
d_23 -7.6917 0.48535
d_24 -7.8672 0.50320
d_25 -7.7771 0.51840
d_26 -7.3596 0.49844
noemps2 0.70217E-01 0.41816E-01
noemps3 0.15315 0.50666E-01
noemps4 0.18331 0.59021E-01
sic0 -0.34010 0.14881
sic1 -0.27980 0.31320
sic2 0.11162 0.14420
sic3 0.10681 0.55326E-01
sic4 -0.37340E-01 0.48817E-01
sic5 0.17095 0.68950E-01
sic7 0.10590 0.13050
sic8 0.15159 0.62793E-01
sic9 -0.85747E-02 0.56799E-01
centre 0.27273 0.37251E-01
provider -0.14480 0.36248E-01
lnwd1_n 0.36398E-01 0.73249E-01
dn -0.28776 0.98936E-01
lnwdn 0.60535E-01 0.24654
n1_d 0.34671E-01 0.45849E-01
nonman -0.38460 0.58816E-01
skilled 0.14399 0.59189E-01
inhouse 0.89923E-02 0.69330E-01
dayrel -0.33592 0.59014E-01
appren -0.46354 0.78031E-01
grade2 -0.21159 0.44140E-01
grade3 -0.39894 0.62896E-01
grade4 -0.55862 0.84984E-01
english -0.11540E-01 0.79475E-01
maths 0.20110 0.10759
eng_maths -0.10601E-01 0.10886
science -0.27547E-01 0.83063E-01
othersub 0.21354E-01 0.10592
olderapp -0.36379 0.46444E-01
written -1.0805 0.68038E-01
lnu18 0.28837 0.32527E-01
lnvj 0.49958E-01 0.24144E-01
lnpopden 0.10854E-01 0.25346E-01
lnrelstaff -0.18725 0.44184E-01
year2 0.15567E-01 0.99046E-01
year3 -0.49198E-02 0.99675E-01
year4 0.97943E-01 0.10327
year5 0.24163 0.11629
year6 0.37347 0.11839
year7 0.63728 0.11703
year8 0.54556 0.13589
month1 0.38008 0.78627E-01
month2 -0.25102E-01 0.78237E-01
month3 -0.62243E-01 0.74242E-01
month4 -0.44664E-01 0.73326E-01
month6 0.40476 0.72406E-01
month7 0.35940 0.79140E-01
month8 0.30456 0.74459E-01
month9 0.25623 0.73212E-01
month10 0.43678 0.76507E-01
month11 0.35861 0.82962E-01
month12 0.23984 0.99498E-01
scale 0.94838 0.95319E-01
<S> stop
Lapsed durations
The first few lines and columns of vac4-lapsed.dat look like
Sabre commands
(lapsed)
out lapsed.log
trace lapsed.trace
data ij provider vacnum dayrel appren inhouse sic0 sic1
sic2 sic3 sic4 &
sic5 sic6 sic7
sic8 sic9 censored td centre grade2 grade3 grade4 &
written
noemps1 noemps2 noemps3 noemps4 year d n dn n1_d lnwd1_n &
lnwdn lnpopden
lnrelstaff nonman skilled english maths eng_maths &
science
othersub olderapp year2 year3 year4 year5 year6 year7 year8 &
month1 month2
month3 month4 month5 month6 month7 month8 month9 &
month10
month11 month12 j lnu18 lnvj y d_1 d_2 d_3 d_4 d_5 d_6 d_7 &
d_8 d_9 d_10
d_11 d_12 d_13 d_14 d_15 d_16 d_17 d_18 d_19 d_20 d_21 &
d_22 d_23 d_24
d_25 d_26 type
read /scratch/hpc/22/stott/vac4-lapsed.dat
case vacnum
yvar y
link c
fit d_1 d_2 d_3 d_4 d_5 d_6 d_7 d_8 d_9 d_10 d_11 d_12
d_13 d_14 d_15 d_16 &
d_17 d_18 d_19
d_20 d_21 d_22 d_23 d_24 d_25 d_26 noemps2 noemps3 &
noemps4 sic0
sic1 sic2 sic3 sic4 sic5 sic7 sic8 sic9 centre provider &
lnwd1_n dn
lnwdn n1_d nonman skilled inhouse dayrel appren grade2 &
grade3 grade4
english maths eng_maths science othersub olderapp &
written lnu18
lnvj lnpopden lnrelstaff year2 year3 year4 year5 year6 &
year7 year8
month1 month2 month3 month4 month6 month7 month8 month9 &
month10 month11
month12
dis m
dis e
stop
Sabre log file
(lapsed)
<S> trace lapsed.trace
<S> data ij provider vacnum dayrel appren inhouse
sic0 sic1 sic2 sic3 sic4 &
<S> sic5
sic6 sic7 sic8 sic9 censored td centre grade2 grade3 grade4 &
<S>
written noemps1 noemps2 noemps3 noemps4 year d n dn n1_d lnwd1_n &
<S>
lnwdn lnpopden lnrelstaff nonman skilled english maths eng_maths &
<S>
science othersub olderapp year2 year3 year4 year5 year6 year7 year8
&
<S>
month1 month2 month3 month4 month5 month6 month7 month8 month9 &
<S>
month10 month11 month12 j lnu18 lnvj y d_1 d_2 d_3 d_4 d_5 d_6 d_7 &
<S> d_8
d_9 d_10 d_11 d_12 d_13 d_14 d_15 d_16 d_17 d_18 d_19 d_20 d_21 &
<S> d_22
d_23 d_24 d_25 d_26 type
<S> read /scratch/hpc/22/stott/vac4-lapsed.dat
390432
observations in dataset
<S> case vacnum
<S> yvar y
<S> link c
<S> fit d_1 d_2 d_3 d_4 d_5 d_6 d_7 d_8 d_9 d_10
d_11 d_12 d_13 d_14 d_15 d_16 &
<S> d_17
d_18 d_19 d_20 d_21 d_22 d_23 d_24 d_25 d_26 noemps2 noemps3 &
<S>
noemps4 sic0 sic1 sic2 sic3 sic4 sic5 sic7 sic8 sic9 centre provider
&
<S>
lnwd1_n dn lnwdn n1_d nonman skilled inhouse dayrel appren grade2 &
<S>
grade3 grade4 english maths eng_maths science othersub olderapp &
<S>
written lnu18 lnvj lnpopden lnrelstaff year2 year3 year4 year5 year6
&
<S> year7
year8 month1 month2 month3 month4 month6 month7 month8 month9 &
<S>
month10 month11 month12
Initial
Homogeneous Fit:
Iteration Log. lik. Difference
__________________________________________
1 -387397.33
2 -81669.171 0.3057E+06
3 -41369.595 0.4030E+05
4 -31094.274 0.1028E+05
5 -29032.908 2061.
6 -28805.631 227.3
7 -28797.933 7.697
8 -28797.909 0.2438E-01
9 -28797.909 0.1894E-05
Iteration Log. lik. Step End-points Orthogonality
length 0 1
criterion
________________________________________________________________________
1 -29123.205 1.0000 fixed
fixed 63.037
2 -28786.404 0.5000 fixed
fixed 6.4499
3 -28763.431 1.0000 fixed
fixed 42.781
4 -28738.614 1.0000 fixed
fixed 5.7802
5 -28733.881 1.0000 fixed
fixed 4.2273
6 -28732.825 1.0000 fixed
fixed 19.024
7 -28732.365 1.0000 fixed
fixed 3.1079
8 -28732.364 1.0000 fixed
fixed 2.3861
9 -28732.364 1.0000 fixed
fixed
<S> dis m
X-vars Y-var Case-var
________________________________________________
d_1 y vacnum
d_2
d_3
d_4
d_5
d_6
d_7
d_8
d_9
d_10
d_11
d_12
d_13
d_14
d_15
d_16
d_17
d_18
d_19
d_20
d_21
d_22
d_23
d_24
d_25
d_26
noemps2
noemps3
noemps4
sic0
sic1
sic2
sic3
sic4
sic5
sic7
sic8
sic9
centre
provider
lnwd1_n
dn
lnwdn
n1_d
nonman
skilled
inhouse
dayrel
appren
grade2
grade3
grade4
english
maths
eng_maths
science
othersub
olderapp
written
lnu18
lnvj
lnpopden
lnrelstaff
year2
year3
year4
year5
year6
year7
year8
month1
month2
month3
month4
month6
month7
month8
month9
month10
month11
month12
Univariate
model
Standard
complementary log-log
Gaussian random
effects
Number of
observations = 390432
Number of
cases = 12840
X-var df =
81
Scale df =
1
Log likelihood
= -28732.364 on
390350 residual degrees of freedom
<S> dis e
Parameter Estimate Std. Err.
___________________________________________________
d_1 -6.2753 0.71370
d_2 -5.5053 0.70308
d_3 -5.7993 0.70015
d_4 -5.6606 0.69655
d_5 -5.5133 0.69322
d_6 -5.5197 0.69138
d_7 -4.9215 0.68608
d_8 -4.6562 0.68255
d_9 -4.7441 0.68087
d_10 -5.0326 0.68126
d_11 -4.8632 0.67944
d_12 -4.9539 0.67948
d_13 -4.9710 0.67927
d_14 -4.6571 0.67672
d_15 -4.3932 0.66775
d_16 -4.1717 0.66477
d_17 -3.9009 0.66382
d_18 -3.7389 0.66404
d_19 -3.6462 0.66520
d_20 -3.5632 0.66663
d_21 -3.2793 0.66695
d_22 -3.0628 0.67443
d_23 -2.5167 0.68349
d_24 -2.3234 0.69633
d_25 -2.3937 0.71225
d_26 -1.6268 0.71566
noemps2 -0.14824 0.60436E-01
noemps3 -0.15179 0.71504E-01
noemps4 -0.94087E-01 0.79157E-01
sic0 -0.90116E-01 0.19364
sic1 -1.1694 0.41520
sic2 0.81021E-01 0.19616
sic3 -0.10651 0.80658E-01
sic4 -0.12826 0.70356E-01
sic5 -0.28963E-01 0.99968E-01
sic7 -0.48313 0.19964
sic8 -0.25867 0.89602E-01
sic9 -0.12623 0.76814E-01
centre -0.74097E-01 0.51199E-01
provider -0.96176E-01 0.50017E-01
lnwd1_n 0.25999 0.99911E-01
dn -0.18580 0.13668
lnwdn 0.38198 0.31999
n1_d -0.13178E-01 0.63886E-01
nonman 0.15326 0.77426E-01
skilled -0.59179E-01 0.78718E-01
inhouse 0.69393E-02 0.95665E-01
dayrel -0.57654 0.83008E-01
appren -0.39845 0.10741
grade2 -0.10141 0.63752E-01
grade3 -0.36203 0.88941E-01
grade4 -0.81484 0.12266
english -0.97608E-01 0.10583
maths -0.39740 0.15147
eng_maths -0.34409 0.15392
science -0.29147 0.11269
othersub -0.39185 0.14714
olderapp 0.94213E-01 0.58684E-01
written -0.64987 0.77768E-01
lnu18 -0.58011E-01 0.42425E-01
lnvj -0.15297 0.32358E-01
lnpopden 0.29189 0.37510E-01
lnrelstaff -0.89345E-01 0.61954E-01
year2 0.13240 0.14710
year3 0.13616 0.14716
year4 -0.17674E-01 0.15284
year5 0.95654E-01 0.16840
year6 0.14673 0.17017
year7 -0.13054E-01 0.16805
year8 0.62634 0.19125
month1 0.16514 0.10961
month2 -0.69156E-01 0.10606
month3 -0.12619 0.10201
month4 0.38386E-01 0.10008
month6 0.22889 0.99563E-01
month7 0.27570 0.10760
month8 0.17218 0.10254
month9 0.40648 0.10018
month10 0.33295 0.10397
month11 0.17680 0.11188
month12 -0.19514 0.14418
scale 1.4426 0.13612
<S> stop