Example L7 Binary response (survival) model (filled and lapsed)

 

These examples are from a study that provides the first estimates of the determinants of employer search in the UK using duration modelling techniques. It involves modelling a job vacancy duration until either it is successfully filled or withdrawn from the market. For further detail see http://www.lancs.ac.uk/staff/ecasb/papers/vacdur_economica.pdf.

 

We treat the 'filled' and 'lapsed' datasets as if they were independent, both data sets have 390,432 binary observations (at the weekly level) on 12,840 vacancies. For the first risk ('filled') the final response for each vacancy is 1 at the point where the vacancy fills, and similarly for the ('lapsed') risk. At all other weeks the responses are zero. There are 7,234 filled vacancies and 5,606 lapsed vacancies.

 

For each type of risk we used a 26-piece non-parametric baseline hazard with 55 covariates.

 

Filled durations

 

The first few lines and columns of vac4-filled.dat look like

 

 

 

Sabre commands (filled analysis)

 

out filled.log

trace filled.trace

data ij provider vacnum dayrel appren inhouse sic0 sic1 sic2 sic3 sic4 &

     sic5 sic6 sic7 sic8 sic9 censored td centre grade2 grade3 grade4 &

     written noemps1 noemps2 noemps3 noemps4 year d n dn n1_d lnwd1_n &

     lnwdn lnpopden lnrelstaff nonman skilled english maths eng_maths &

     science othersub olderapp year2 year3 year4 year5 year6 year7 year8 &

     month1 month2 month3 month4 month5 month6 month7 month8 month9 &

     month10 month11 month12 j lnu18 lnvj y d_1 d_2 d_3 d_4 d_5 d_6 d_7 &

     d_8 d_9 d_10 d_11 d_12 d_13 d_14 d_15 d_16 d_17 d_18 d_19 d_20 d_21 &

     d_22 d_23 d_24 d_25 d_26 type

read /scratch/hpc/22/stott/vac4-filled.dat

case vacnum

yvar y

fit d_1 d_2 d_3 d_4 d_5 d_6 d_7 d_8 d_9 d_10 d_11 d_12 d_13 d_14 d_15 d_16 &

    d_17 d_18 d_19 d_20 d_21 d_22 d_23 d_24 d_25 d_26 noemps2 noemps3 &

    noemps4 sic0 sic1 sic2 sic3 sic4 sic5 sic7 sic8 sic9 centre provider &

    lnwd1_n dn lnwdn n1_d nonman skilled inhouse dayrel appren grade2 &

    grade3 grade4 english maths eng_maths science othersub olderapp &

    written lnu18 lnvj lnpopden lnrelstaff year2 year3 year4 year5 year6 &

    year7 year8 month1 month2 month3 month4 month6 month7 month8 month9 &

    month10 month11 month12

dis m

dis e

stop

 

 

 

 

 

Sabre log file

 

<S> trace filled.trace

<S> data ij provider vacnum dayrel appren inhouse sic0 sic1 sic2 sic3 sic4 &

<S>      sic5 sic6 sic7 sic8 sic9 censored td centre grade2 grade3 grade4 &

<S>      written noemps1 noemps2 noemps3 noemps4 year d n dn n1_d lnwd1_n &

<S>      lnwdn lnpopden lnrelstaff nonman skilled english maths eng_maths &

<S>      science othersub olderapp year2 year3 year4 year5 year6 year7 year8 &

<S>      month1 month2 month3 month4 month5 month6 month7 month8 month9 &

<S>      month10 month11 month12 j lnu18 lnvj y d_1 d_2 d_3 d_4 d_5 d_6 d_7 &

<S>      d_8 d_9 d_10 d_11 d_12 d_13 d_14 d_15 d_16 d_17 d_18 d_19 d_20 d_21 &

<S>      d_22 d_23 d_24 d_25 d_26 type

<S> read /scratch/hpc/22/stott/vac4-filled.dat

 

     390432 observations in dataset

 

<S> case vacnum

<S> yvar y

<S> link c

<S> fit d_1 d_2 d_3 d_4 d_5 d_6 d_7 d_8 d_9 d_10 d_11 d_12 d_13 d_14 d_15 d_16 &

<S>     d_17 d_18 d_19 d_20 d_21 d_22 d_23 d_24 d_25 d_26 noemps2 noemps3 &

<S>     noemps4 sic0 sic1 sic2 sic3 sic4 sic5 sic7 sic8 sic9 centre provider &

<S>     lnwd1_n dn lnwdn n1_d nonman skilled inhouse dayrel appren grade2 &

<S>     grade3 grade4 english maths eng_maths science othersub olderapp &

<S>     written lnu18 lnvj lnpopden lnrelstaff year2 year3 year4 year5 year6 &

<S>     year7 year8 month1 month2 month3 month4 month6 month7 month8 month9 &

<S>     month10 month11 month12

 

    Initial Homogeneous Fit:

 

    Iteration       Log. lik.       Difference

    __________________________________________

        1          -386516.06

        2          -84780.650       0.3017E+06

        3          -45785.228       0.3900E+05

        4          -35969.984        9815.

        5          -33826.874        2143.

        6          -33489.729        337.1

        7          -33465.995        23.73

        8          -33465.694       0.3004

        9          -33465.694       0.1636E-03

       10          -33465.694       0.1433E-08

 

 

    Iteration       Log. lik.         Step      End-points     Orthogonality

                                     length    0          1      criterion

    ________________________________________________________________________

        1          -33757.916        1.0000    fixed  fixed       67.679

        2          -33711.882        0.5000    fixed  fixed       15.600

        3          -33495.120        1.0000    fixed  fixed       6.5731

        4          -33481.845        1.0000    fixed  fixed       4.8202

        5          -33469.033        0.5000    fixed  fixed       1130.8

        6          -33430.503        1.0000    fixed  fixed       7.3092

        7          -33424.272        1.0000    fixed  fixed       2.7345

        8          -33424.160        1.0000    fixed  fixed       1.9924

        9          -33424.160        1.0000    fixed  fixed       2.1109

       10          -33424.160        1.0000    fixed  fixed

 

<S> dis m

 

    X-vars            Y-var             Case-var

    ________________________________________________

    d_1               y                 vacnum

    d_2

    d_3

    d_4

    d_5

    d_6

    d_7

    d_8

    d_9

    d_10

    d_11

    d_12

    d_13

    d_14

    d_15

    d_16

    d_17

    d_18

    d_19

    d_20

    d_21

    d_22

    d_23

    d_24

    d_25

    d_26

    noemps2

    noemps3

    noemps4

    sic0

    sic1

    sic2

    sic3

    sic4

    sic5

    sic7

    sic8

    sic9

    centre

    provider

    lnwd1_n

    dn

    lnwdn

    n1_d

    nonman

    skilled

    inhouse

    dayrel

    appren

    grade2

    grade3

    grade4

    english

    maths

    eng_maths

    science

    othersub

    olderapp

    written

    lnu18

    lnvj

    lnpopden

    lnrelstaff

    year2

    year3

    year4

    year5

    year6

    year7

    year8

    month1

    month2

    month3

    month4

    month6

    month7

    month8

    month9

    month10

    month11

    month12

 

    Univariate model

    Standard complementary log-log

    Gaussian random effects

 

    Number of observations             =  390432

    Number of cases                    =   12840

 

    X-var df           =    81

    Scale df           =     1

 

    Log likelihood =     -33424.160     on  390350 residual degrees of freedom

 

<S> dis e

 

    Parameter              Estimate         Std. Err.

    ___________________________________________________

    d_1                    -6.4338          0.51637

    d_2                    -7.0011          0.50937

    d_3                    -7.7040          0.50843

    d_4                    -7.6598          0.50658

    d_5                    -7.5495          0.50456

    d_6                    -7.4617          0.50267

    d_7                    -7.1142          0.49965

    d_8                    -6.8503          0.49690

    d_9                    -7.1359          0.49626

    d_10                   -7.3896          0.49655

    d_11                   -7.2214          0.49481

    d_12                   -7.1999          0.49399

    d_13                   -7.1767          0.49322

    d_14                   -7.0299          0.49177

    d_15                   -7.0685          0.48377

    d_16                   -7.0656          0.48028

    d_17                   -7.1705          0.47878

    d_18                   -7.2494          0.47836

    d_19                   -7.4207          0.47943

    d_20                   -7.5001          0.48069

    d_21                   -7.5973          0.47503

    d_22                   -7.6094          0.47796

    d_23                   -7.6917          0.48535

    d_24                   -7.8672          0.50320

    d_25                   -7.7771          0.51840

    d_26                   -7.3596          0.49844

    noemps2                0.70217E-01      0.41816E-01

    noemps3                0.15315          0.50666E-01

    noemps4                0.18331          0.59021E-01

    sic0                  -0.34010          0.14881

    sic1                  -0.27980          0.31320

    sic2                   0.11162          0.14420

    sic3                   0.10681          0.55326E-01

    sic4                  -0.37340E-01      0.48817E-01

    sic5                   0.17095          0.68950E-01

    sic7                   0.10590          0.13050

    sic8                   0.15159          0.62793E-01

    sic9                  -0.85747E-02      0.56799E-01

    centre                 0.27273          0.37251E-01

    provider              -0.14480          0.36248E-01

    lnwd1_n                0.36398E-01      0.73249E-01

    dn                    -0.28776          0.98936E-01

    lnwdn                  0.60535E-01      0.24654

    n1_d                   0.34671E-01      0.45849E-01

    nonman                -0.38460          0.58816E-01

    skilled                0.14399          0.59189E-01

    inhouse                0.89923E-02      0.69330E-01

    dayrel                -0.33592          0.59014E-01

    appren                -0.46354          0.78031E-01

    grade2                -0.21159          0.44140E-01

    grade3                -0.39894          0.62896E-01

    grade4                -0.55862          0.84984E-01

    english               -0.11540E-01      0.79475E-01

    maths                  0.20110          0.10759

    eng_maths             -0.10601E-01      0.10886

    science               -0.27547E-01      0.83063E-01

    othersub               0.21354E-01      0.10592

    olderapp              -0.36379          0.46444E-01

    written                -1.0805          0.68038E-01

    lnu18                  0.28837          0.32527E-01

    lnvj                   0.49958E-01      0.24144E-01

    lnpopden               0.10854E-01      0.25346E-01

    lnrelstaff            -0.18725          0.44184E-01

    year2                  0.15567E-01      0.99046E-01

    year3                 -0.49198E-02      0.99675E-01

    year4                  0.97943E-01      0.10327

    year5                  0.24163          0.11629

    year6                  0.37347          0.11839

    year7                  0.63728          0.11703

    year8                  0.54556          0.13589

    month1                 0.38008          0.78627E-01

    month2                -0.25102E-01      0.78237E-01

    month3                -0.62243E-01      0.74242E-01

    month4                -0.44664E-01      0.73326E-01

    month6                 0.40476          0.72406E-01

    month7                 0.35940          0.79140E-01

    month8                 0.30456          0.74459E-01

    month9                 0.25623          0.73212E-01

    month10                0.43678          0.76507E-01

    month11                0.35861          0.82962E-01

    month12                0.23984          0.99498E-01

    scale                  0.94838          0.95319E-01

 

<S> stop

 

 

 

 

Lapsed durations

 

The first few lines and columns of vac4-lapsed.dat look like

 

 

 

Sabre commands (lapsed)

 

out lapsed.log

trace lapsed.trace

data ij provider vacnum dayrel appren inhouse sic0 sic1 sic2 sic3 sic4 &

     sic5 sic6 sic7 sic8 sic9 censored td centre grade2 grade3 grade4 &

     written noemps1 noemps2 noemps3 noemps4 year d n dn n1_d lnwd1_n &

     lnwdn lnpopden lnrelstaff nonman skilled english maths eng_maths &

     science othersub olderapp year2 year3 year4 year5 year6 year7 year8 &

     month1 month2 month3 month4 month5 month6 month7 month8 month9 &

     month10 month11 month12 j lnu18 lnvj y d_1 d_2 d_3 d_4 d_5 d_6 d_7 &

     d_8 d_9 d_10 d_11 d_12 d_13 d_14 d_15 d_16 d_17 d_18 d_19 d_20 d_21 &

     d_22 d_23 d_24 d_25 d_26 type

read /scratch/hpc/22/stott/vac4-lapsed.dat

case vacnum

yvar y

link c

fit d_1 d_2 d_3 d_4 d_5 d_6 d_7 d_8 d_9 d_10 d_11 d_12 d_13 d_14 d_15 d_16 &

    d_17 d_18 d_19 d_20 d_21 d_22 d_23 d_24 d_25 d_26 noemps2 noemps3 &

    noemps4 sic0 sic1 sic2 sic3 sic4 sic5 sic7 sic8 sic9 centre provider &

    lnwd1_n dn lnwdn n1_d nonman skilled inhouse dayrel appren grade2 &

    grade3 grade4 english maths eng_maths science othersub olderapp &

    written lnu18 lnvj lnpopden lnrelstaff year2 year3 year4 year5 year6 &

    year7 year8 month1 month2 month3 month4 month6 month7 month8 month9 &

    month10 month11 month12

dis m

dis e

stop

 

 

 

Sabre log file (lapsed)

 

<S> trace lapsed.trace

<S> data ij provider vacnum dayrel appren inhouse sic0 sic1 sic2 sic3 sic4 &

<S>      sic5 sic6 sic7 sic8 sic9 censored td centre grade2 grade3 grade4 &

<S>      written noemps1 noemps2 noemps3 noemps4 year d n dn n1_d lnwd1_n &

<S>      lnwdn lnpopden lnrelstaff nonman skilled english maths eng_maths &

<S>      science othersub olderapp year2 year3 year4 year5 year6 year7 year8 &

<S>      month1 month2 month3 month4 month5 month6 month7 month8 month9 &

<S>      month10 month11 month12 j lnu18 lnvj y d_1 d_2 d_3 d_4 d_5 d_6 d_7 &

<S>      d_8 d_9 d_10 d_11 d_12 d_13 d_14 d_15 d_16 d_17 d_18 d_19 d_20 d_21 &

<S>      d_22 d_23 d_24 d_25 d_26 type

<S> read /scratch/hpc/22/stott/vac4-lapsed.dat

 

     390432 observations in dataset

 

<S> case vacnum

<S> yvar y

<S> link c

<S> fit d_1 d_2 d_3 d_4 d_5 d_6 d_7 d_8 d_9 d_10 d_11 d_12 d_13 d_14 d_15 d_16 &

<S>     d_17 d_18 d_19 d_20 d_21 d_22 d_23 d_24 d_25 d_26 noemps2 noemps3 &

<S>     noemps4 sic0 sic1 sic2 sic3 sic4 sic5 sic7 sic8 sic9 centre provider &

<S>     lnwd1_n dn lnwdn n1_d nonman skilled inhouse dayrel appren grade2 &

<S>     grade3 grade4 english maths eng_maths science othersub olderapp &

<S>     written lnu18 lnvj lnpopden lnrelstaff year2 year3 year4 year5 year6 &

<S>     year7 year8 month1 month2 month3 month4 month6 month7 month8 month9 &

<S>     month10 month11 month12

 

    Initial Homogeneous Fit:

 

    Iteration       Log. lik.       Difference

    __________________________________________

        1          -387397.33

        2          -81669.171       0.3057E+06

        3          -41369.595       0.4030E+05

        4          -31094.274       0.1028E+05

        5          -29032.908        2061.

        6          -28805.631        227.3

        7          -28797.933        7.697

        8          -28797.909       0.2438E-01

        9          -28797.909       0.1894E-05

 

 

    Iteration       Log. lik.         Step      End-points     Orthogonality

                                     length    0          1      criterion

    ________________________________________________________________________

        1          -29123.205        1.0000    fixed  fixed       63.037

        2          -28786.404        0.5000    fixed  fixed       6.4499

        3          -28763.431        1.0000    fixed  fixed       42.781

        4          -28738.614        1.0000    fixed  fixed       5.7802

        5          -28733.881        1.0000    fixed  fixed       4.2273

        6          -28732.825        1.0000    fixed  fixed       19.024

        7          -28732.365        1.0000    fixed  fixed       3.1079

        8          -28732.364        1.0000    fixed  fixed       2.3861

        9          -28732.364        1.0000    fixed  fixed

 

<S> dis m

 

    X-vars            Y-var             Case-var

    ________________________________________________

    d_1               y                 vacnum

    d_2

    d_3

    d_4

    d_5

    d_6

    d_7

    d_8

    d_9

    d_10

    d_11

    d_12

    d_13

    d_14

    d_15

    d_16

    d_17

    d_18

    d_19

    d_20

    d_21

    d_22

    d_23

    d_24

    d_25

    d_26

    noemps2

    noemps3

    noemps4

    sic0

    sic1

    sic2

    sic3

    sic4

    sic5

    sic7

    sic8

    sic9

    centre

    provider

    lnwd1_n

    dn

    lnwdn

    n1_d

    nonman

    skilled

    inhouse

    dayrel

    appren

    grade2

    grade3

    grade4

    english

    maths

    eng_maths

    science

    othersub

    olderapp

    written

    lnu18

    lnvj

    lnpopden

    lnrelstaff

    year2

    year3

    year4

    year5

    year6

    year7

    year8

    month1

    month2

    month3

    month4

    month6

    month7

    month8

    month9

    month10

    month11

    month12

 

    Univariate model

    Standard complementary log-log

    Gaussian random effects

 

    Number of observations             =  390432

    Number of cases                    =   12840

 

    X-var df           =    81

    Scale df           =     1

 

    Log likelihood =     -28732.364     on  390350 residual degrees of freedom

 

<S> dis e

 

    Parameter              Estimate         Std. Err.

    ___________________________________________________

    d_1                    -6.2753          0.71370

    d_2                    -5.5053          0.70308

    d_3                    -5.7993          0.70015

    d_4                    -5.6606          0.69655

    d_5                    -5.5133          0.69322

    d_6                    -5.5197          0.69138

    d_7                    -4.9215          0.68608

    d_8                    -4.6562          0.68255

    d_9                    -4.7441          0.68087

    d_10                   -5.0326          0.68126

    d_11                   -4.8632          0.67944

    d_12                   -4.9539          0.67948

    d_13                   -4.9710          0.67927

    d_14                   -4.6571          0.67672

    d_15                   -4.3932          0.66775

    d_16                   -4.1717          0.66477

    d_17                   -3.9009          0.66382

    d_18                   -3.7389          0.66404

    d_19                   -3.6462          0.66520

    d_20                   -3.5632          0.66663

    d_21                   -3.2793          0.66695

    d_22                   -3.0628          0.67443

    d_23                   -2.5167          0.68349

    d_24                   -2.3234          0.69633

    d_25                   -2.3937          0.71225

    d_26                   -1.6268          0.71566

    noemps2               -0.14824          0.60436E-01

    noemps3               -0.15179          0.71504E-01

    noemps4               -0.94087E-01      0.79157E-01

    sic0                  -0.90116E-01      0.19364

    sic1                   -1.1694          0.41520

    sic2                   0.81021E-01      0.19616

    sic3                  -0.10651          0.80658E-01

    sic4                  -0.12826          0.70356E-01

    sic5                  -0.28963E-01      0.99968E-01

    sic7                  -0.48313          0.19964

    sic8                  -0.25867          0.89602E-01

    sic9                  -0.12623          0.76814E-01

    centre                -0.74097E-01      0.51199E-01

    provider              -0.96176E-01      0.50017E-01

    lnwd1_n                0.25999          0.99911E-01

    dn                    -0.18580          0.13668

    lnwdn                  0.38198          0.31999

    n1_d                  -0.13178E-01      0.63886E-01

    nonman                 0.15326          0.77426E-01

    skilled               -0.59179E-01      0.78718E-01

    inhouse                0.69393E-02      0.95665E-01

    dayrel                -0.57654          0.83008E-01

    appren                -0.39845          0.10741

    grade2                -0.10141          0.63752E-01

    grade3                -0.36203          0.88941E-01

    grade4                -0.81484          0.12266

    english               -0.97608E-01      0.10583

    maths                 -0.39740          0.15147

    eng_maths             -0.34409          0.15392

    science               -0.29147          0.11269

    othersub              -0.39185          0.14714

    olderapp               0.94213E-01      0.58684E-01

    written               -0.64987          0.77768E-01

    lnu18                 -0.58011E-01      0.42425E-01

    lnvj                  -0.15297          0.32358E-01

    lnpopden               0.29189          0.37510E-01

    lnrelstaff            -0.89345E-01      0.61954E-01

    year2                  0.13240          0.14710

    year3                  0.13616          0.14716

    year4                 -0.17674E-01      0.15284

    year5                  0.95654E-01      0.16840

    year6                  0.14673          0.17017

    year7                 -0.13054E-01      0.16805

    year8                  0.62634          0.19125

    month1                 0.16514          0.10961

    month2                -0.69156E-01      0.10606

    month3                -0.12619          0.10201

    month4                 0.38386E-01      0.10008

    month6                 0.22889          0.99563E-01

    month7                 0.27570          0.10760

    month8                 0.17218          0.10254

    month9                 0.40648          0.10018

    month10                0.33295          0.10397

    month11                0.17680          0.11188

    month12               -0.19514          0.14418

    scale                   1.4426          0.13612

 

<S> stop