Sabre |
Simulation study [s3bb1.dat-s3bb25.dat] ---------------- Univariate multilevel binary logit model 2449 observations, 1558 level-2 cases, 161 level-3 cases, 4+2 (fixed+random) parameters (true values: beta_0 = 0.665267, all other parameters equal to 1) SABRE: 24-point quadrature STATA: model cannot be fitted GLLAMM: 24-point non-adaptive quadrature IGLS: 2nd order PQL MCMC: default settings (Gamma priors), 25000 iterations; approximate timing due to running in interactive mode (time quoted is that for a single dataset [3'40"] multiplied by 25) Sample means and standard deviations over the 25 replications. SABRE STATA GLLAMM IGLS MCMC beta_0 0.642 (0.037) na as SABRE 0.615 (0.035) 0.636 (0.037) beta_1 0.995 (0.046) 0.948 (0.043) 0.984 (0.047) beta_2 1.000 (0.020) 0.951 (0.019) 0.992 (0.021) beta_3 0.996 (0.045) 0.951 (0.043) 0.987 (0.046) sigma_v 0.957 (0.020) 0.909 (0.019) 0.973 (0.023) sigma_u 0.950 (0.026) 0.704 (0.025) 0.881 (0.055) time 01'52" 4h'00' 01'27" 91'40" Mean square errors over the 25 replications. SABRE STATA GLLAMM IGLS MCMC beta_0 0.034 na as SABRE 0.034 0.035 beta_1 0.052 0.049 0.056 beta_2 0.010 0.011 0.011 beta_3 0.050 0.049 0.053 sigma_v 0.012 0.018 0.014 sigma_u 0.020 0.104 0.090 Coverage over the 25 replications (95% confidence intervals). SABRE STATA GLLAMM IGLS MCMC beta_0 96% na as SABRE 92% 96% beta_1 96% 96% 92% beta_2 96% 88% 96% beta_3 100% 96% 100% sigma_v 96% 84% 96% sigma_u 96% 24% 92%
Other links: Centre for e-Science | Centre for Applied Statistics